
Secure Coding for
Android Applications

1 Secure Coding for Android Applications

WHITE PAPER

2 Secure Coding for Android Applications

WHITE PAPER

Table of Contents Author

This white paper was written by:
Naveen Rudrapp, Senior Security
Consultant, McAfee® Foundstone®
Professional Services

3	 Android Application Components
3	 	 Activity
4	 	 Intents
4	 	 Service
4	 	 Content Providers
4		 WebView
4	 	 Permissions
4	 Secure Coding Recommendations
4	 	 Lock-down application permissions
7	 	 Handle Broadcast Messages carefully
8	 	 Broadcast Messages for Inter-Process Communication (IPC)
9	 	 Insecure storage
10	 	 Insecure storage in process memory
12	 	 Protect pending intents
13	 	 Improper usage of WebView
15	 	 Secure usage of service
16	 	 Content providers
16	 	 Improper use of implicit intents
18	 	 Code obfuscation
19	 	 Excessive logging
19	 	 Use strong passwords and not PINs
20	 	 Perform data validation
20	 	 Common mistakes
21	 References
21	 About the Author
21	 About McAee Foundstone Professional Services

Android Application Components
Before diving deeply into Android’s security options, it
is necessary to take a high-level overview of the major
components of an Android application to understand
how the different pieces fit together. Please refer
to Android developer documentation for extensive
information about various components discussed below.

Activity
In Android development terms, an “Activity” refers to
single, focused window that interacts with a user and
provides functionality. An activity forms the fundamental
building blocks of the application.

An activity has the following states:

■■ Active: When an activity is interacting with a user, it is
at the top of the activity stack and visible to the user.

Android will kill any other services or activities on the
stack to keep the active activity alive.

■■ Paused: This is a state where an activity is not in focus
but is actually visible to user. For example, this state
is reached when a pop-up appears when activity is
running.

■■ Stopped: This is the state where activity is not visible
to user, but resides in memory and retaining all data.
This activity will be killed to save memory if needed for
an active activity.

■■ Inactive: An activity just before launching, after it has
been killed, is said to be in an inactive state.

Knowing about the states of an activity allows a
developer to understand how data is handled and aids
in implementing activities securely.

WHITE PAPER

Secure Coding for Android Applications

3 Secure Coding for Android Applications

Smartphones are more popular than ever. One of the reasons for this is the fact that
the Google Android operating system (OS) is a platform that enables developers to write
applications and distribute them for free in an open market. According to the latest studies,
more than one billion Android devices have been activated with an astonishing growth of
1.4 million devices per day. With this sort of growth, it is absolutely necessary for developers
to understand how to create secure Android applications. This white paper focuses on
secure coding practices for Android applications.

Connect With Us

https://securingtomorrow.mcafee.com/
https://twitter.com/mcafee_business
https://www.linkedin.com/company/mcafee/
http://www.facebook.com/mcafee
http://www.youtube.com/mcafee
http://www.slideshare.net/mcafee

4 Secure Coding for Android Applications

WHITE PAPER

Intents
An intent is commonly used to start an activity or
service. Intents can be broadcast and received within
the application itself and with other applications. This
allows for great flexibility in application development,
information sharing, and the ability to trigger operations
in other applications.

There are two main types of intents:

■■ Explicit intents: Explicit intents specify the exact class
that needs to be invoked to launch an activity within
the application. These are limited to the application
context in which they are run.

■■ Implicit intents: These are the intents that hold
information about the type of operation to be
performed. It’s up to the OS to decide the best
operation based on the information provided.

Service
A service represents a background operation or an
operation that does not require user interaction and
takes a lengthy amount of time to complete. These
operations are performed without affecting the main
application running on the front end. Service continues
to run in background, even when application is
not running.

Content Providers
Content providers store data persistently. They
manage the storage of application data and interact
with a number of local SQL databases. Content
providers also provide the best means to share data
between applications.

WebView
WebViews act like a web browser to display HTML
content to the user. Android’s WebKit engine is used to
display web pages. Any vulnerability found in WebKit
directly impacts the WebView. This component allows
a user to navigate forward and backward through the
history, zoom in and out, and perform text searches, just
like Internet Explorer, Firefox, or any other browser.

Permissions
The core security of an application is defined by its
permissions. The extent to which an application
can perform an action is limited to the permissions
defined in its AndroidManifest.xml. By default,
every application is sandboxed by the OS and restricts
access to the data of another application. At the time of
application installation, the user is presented with the
list of permissions that are required by the application.
Once the user grants those permissions, only then the
application will be installed. Granting of permissions
dynamically at runtime is not supported.

Secure Coding Recommendations
So far, we have covered the various Android components
used in an application. In this section, we will cover
secure coding recommendations and the associated
client-side application attacks.

Lock-down application permissions
It is necessary to follow the principle of least privilege
when assigning permissions. Permissions should not
be assigned unless they are required. The application
should be granted only the minimum required
permissions at the architecture level. For instance,

5 Secure Coding for Android Applications

WHITE PAPER

READWRITE permissions should not be granted
when only READ permissions are required. This is a
common mistake made by developers due to a lack of
understanding of the functionality at the application.
Examples like these underscore the importance
of strong application development planning and
requirements documentation.

For example, the Android:protectionLevel
element of the AndroidManifest.xml file defines
the protection/risk level associated with the installed
application. It also provides the procedure the OS
should follow to determine whether the permission
can be granted. When the value of the parameter is
dangerous, the application, when installed, gains
permission to access user data and to control the device.
Developers should exercise extreme caution while
assigning applications with high-risk permissions.

File permissions
File permissions apply to files stored on external
storage. Any file created using openFileOutput is
private to the application and cannot be accessed
by other applications. Pay close attention before
providing a file with the MODE _ WORLD _ READABLE or
MODE _ WORLD _ WRITABLE permissions. This allows
other applications to access the file. Do not provide
the writable option until it is required to enforce the
principle of least privilege. The standard way to share a
file between applications is to use Content Provider.

Permissions can be defined at two levels: in the
AndroidManifest.xml file and in program’s code.
Both cases need to be analyzed for security issues.

1.	 Permission defined in AndroidManifest.xml are
shown in Figure 1.

Figure 1. Image shows permissions defined in AndroidManifest.XML file.

6 Secure Coding for Android Applications

WHITE PAPER

2.	 In code, permission defined for a file is as below:

String OUTPUT_FILE = “file.txt”;
FileOutputStream fos = openFileOutput(OUTPUT_
FILE,
Context.MODE_WORLD_WRITEABLE);

Custom permissions
Another important consideration is the use of custom permissions. These permissions are described to the user via
a permission description within the Android:description tag of AndroidManifest.xml. Care needs to be taken to
ensure the description is adequate to provide the layperson user with information that details what permission is
being granted.

Below is a code sample showing the description defined for custom permission used:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:Android=”http://schemas.Android.com/apk/res/Android”
 package=”com.testpackage.permissiontestclient”
 Android:versionCode=”1”
 Android:versionName=”1.0” >

 <uses-sdk Android:minSdkVersion=”10” />
 <permission Android:name=”com.testpaccourierkage.mypermission”
Android:label=”my_permission” Android:protectionLevel=”dangerous”
Android:description=”@string/detonate_description”></permission>
<application>
 <activity
 Android:permission=”com.testpackage.mypermission”
 Android:name=”.PermissionTestClientActivity”
 Android:label=”@string/app_name” >
 </activity>
</application>
</manifest>

7 Secure Coding for Android Applications

WHITE PAPER

Handle Broadcast Messages carefully
To handle event-driven tasks, an application can register
a broadcast receiver that executes a function once
it’s passed an intent that matches specified criteria.
Applications can send broadcast intents, which allow
another application to receive it and process its data.

There are two ways to register a broadcast
receiver: within the application code and within the
AndroidManifest.xml:

Registering a broadcast receiver within the application
code:

registerReceiver(new BroadcastReceiver(){

@Override
public void onReceive(Context context, Intent
intent) {…}
}, null);

Registering a broadcast receiver within the
AndroidManifest.xml:

<receiver Android:name=”receiver” >
<intent-filter>
<action Android:name=”com.Myapplciation.
Android.mybroadcast” />
</intent-filter>
</receiver>

Once the class that receives broadcast intents has been
identified, it must be thoroughly reviewed to ensure
sound development practices.

Null values passed to broadcast receivers
One common area of concern involves variables
containing null values sent within a broadcast intent.
Application developers commonly forget to consider this
possibility which may result in a denial-of-service (DoS)
condition.

public class MyBroadcastReceiver extends BroadcastReceiver {
@Override
 public void onReceive(Context context, Intent intent) {
 //Code implemented here
 //check if intent and variables value in it is null before using it
 //and proper security exceptions are in place to handle it
 //without crashing the application
 }
	}

It is important to check intent and to make sure that
variables in intent are for null in both of the cases
discussed above before performing any operation
to ensure null protection is in place. Any object or
data received from the broadcast should be checked
for invalid data or exceptions before using it in an
application.

8 Secure Coding for Android Applications

WHITE PAPER

Broadcast Messages for Inter-Process
Communication (IPC)
The nature of broadcast messages permits any
application to receive a broadcasted Intent. If broadcast
messages are used for IPC, then a malicious application
may be able to gain access to another application’s data.
This is often a common occurrence that demonstrates
the lack of understanding around broadcast messages.

The following functions send broadcast messages and
are vulnerable to IPC sniffing:
sendBroadcast(intent);
sendStickyBroadcast(intent);

To mitigate this issue, use intents with assigned
permissions. This can be achieved in two ways, shown
below. A malicious application cannot receive an intent if
it is not granted the required permissions.

Permission defined in code:
String requiredPermission =

“com.Foundstone.MY _ BROADCAST _
PERMISSION _ Defined”;

sendBroadcast(intent,
requiredPermission);

sendOrderedBroadcast(intent,
requiredPermission);

Permission defined in AndroidManifest.xml file:

<receiver
Android:name=”com.Foundstone.
NameForOrderedReceiver”
Android:permission=”com.Foundstone.MY_
BROADCAST_PERMISSION_Defined”>

<intent-filter>
<action Android:name=”com.Foundstone.
action.ACTION_CLASS_FOR_ORDERED_BROADCAST”
/>
</intent-filter>

</receiver>

Using this method, an intent will be delivered to those
registered receivers who are granted the required
permission.

Use the local broadcast manager if the intent needs to
be broadcast locally. The local broadcast manager allows
intents to be broadcast locally within the application so
no other application can gain unauthorized access to
application data.

The code below shows how a local broadcast is sent:
LocalBroadcastManager lbm =
LocalBroadcastManager.getInstance(this);
lbm.sendBroadcast(new Intent(ANY _
ACTION _ TO _ BE _ PERFORMED));

9 Secure Coding for Android Applications

WHITE PAPER

Insecure storage
Application data should be stored in two folders:

■■ /data/data/<package name of application>
■■ /sdcard

Data stored in both of these directories behave
differently from a security standpoint. Data that is stored
in /data/data/<package name of application>
cannot be accessed by another application unless the
application explicitly provides permissions or if the
Android device is rooted. Data that is stored in /sdcard
can be accessed by any application without the need for
any special permission or rooting. Hence, it is common
for malicious applications to access data in /sdcard.

When evaluating an application’s storage usage,
ensure that both online and offline functionality of
the application is evaluated. Look specifically for code
that allows storage of the data locally and ensure that
no sensitive data is stored on the client side. At the
architecture level, try to minimize the sensitive data that
needs to be stored on the device. If any data needs to be
stored, then encrypt it using a strong algorithm prior to
storage.

WebView Caching
WebView class allows HTML data gets cached locally.
If sensitive information is requested by WebView, then
consider using clearCache()to delete any sensitive
data stored locally. Also use “no-cache” to instruct the
Android WebKit not to cache data.

PreferenceActivity storage
PreferenceActivity allows a user to store data

locally that can be read by all the classes in the
application. When this activity is used, an XML file
is created in /data/data/<Package name of
application>. This data persists even after the
application is closed. If the mobile device is stolen, then
data stored within the XML file can be retrieved after
rooting the device.

Insecure storage in process memory
Data processed by the application may be stored
within memory longer than necessary, which makes
it more susceptible to attack. An attacker with access
to the phone may be able to dump the memory of the
process to gain access to sensitive information such as
usernames, passwords, and other data.

Analyze the classes that take username, password,
and account number as input. Try to determine if the
values are cleared in the memory after use. If not,
the application may expose sensitive information if a
memory dump can be obtained by an attacker.

The Application class is another important class to
be re-initialized with junk value once the application is
closed. This class is shared across all the classes of same
application and remains active even after application
is closed. Hence, any data stored in this class can be
obtained via dumping memory.

To manually validate that sensitive information is cleared
from memory, log into the application, execute any
operation that takes in sensitive data as input, and
perform a memory dump to view if there is any sensitive
present in it.

10 Secure Coding for Android Applications

WHITE PAPER

Steps to obtain a memory dump and analysis:

1.	 Obtain the memory dump of the target application
using the ddms.bat tool after logging out of the
application. This tool is present in the tools directory
of the Android SDK.

2.	 Convert it to readable format using hprof-conv.
exe. This tool is present in the tools directory of the
Android SDK.
	 Command: hprof-conv.exe source dest

3.	 Open the file obtained in the Eclipse memory analyzer.

4.	 Click on Open Dominator for entIre heap.

5.	 Click on “Group result by Group by package”.

6.	 Navigate to the class that holds sensitive data, and
see if the data is still available in clear text and if it can
be retrieved.

Figure 2. Username and password stored in variables and retrieved via
memory dumping once user has logged out.

The Dalvik runtime allows garbage collection, but this
does not allow a developer not to consider memory
management. It is never advisable for any variable to
hold sensitive information in it even when the user is
logged in. This is especially true when the user logs
off the application. At that point, all variables holding
sensitive information should be cleared by initializing
them to some junk value.

Protect pending intents
The pending intents function allows the intent in your
application to be invoked by another application. Just
invoking the intent is not the issue. The issue is that the
application that invokes the intent also executes at the
same permission level as that of the application that had
the pending intent to be invoked.

By allowing other applications to invoke
PendingIntent in our application, we are allowing
the other applications to execute at the same privilege
as that of our application. Hence, we should be careful
about trust and operation performed by third-party
applications using PendingIntent.

Look for the code snippets as shown below while
checking for secure usage of pending intent—you
can identify that intent is being handed over to the
alarmManager application:

11 Secure Coding for Android Applications

WHITE PAPER

Intent myIntent = new
Intent(AndroidAlarmService.this,
MyAlarmService.class);
pendingIntent = PendingIntent.
getService(AndroidAlarmService.this, 0,
myIntent, 0);
AlarmManager alarmManager =
(AlarmManager)getSystemService(ALARM_
SERVICE);
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.
currentTimeMillis());
calendar.add(Calendar.SECOND, 10);
alarmManager.set(AlarmManager.RTC_WAKEUP,
calendar.getTimeInMillis(), pendingIntent);

Once identified, check to see if the intent is handed
over to a third-party application. Now try to figure out
what the third-party application does with the pending
intent (that is, alaramManager). Here it is necessary to
understand that the trust is based on the third-party
application to determine if any security issues exist.

PendingIntents can be created using three different
functions; therefore, four types of code need to be
analyzed:

■■ getActivity(Context, int, Intent, int)

■■ getActivities(Context, int, Intent[], int)

■■ getBroadcast(Context, int, Intent, int)

■■ getService(Context, int, Intent, int)

The best and simplest approach is to find an alternative
for the pending intent which is as good as eliminating
risk. If a pending intent is an application requirement,

make sure that only a trusted application receives it.
This leaves no room for that intent to be used by an
untrusted application.

Improper usage of WebView
The WebView class is one of the most powerful classes,
and it renders web pages inside a normal browser. It
also allows applications to interact with WebView by
adding a hook, monitoring changes being made, add
JavaScript, and more. Even though this seems like a great
feature, it brings in security loopholes if not used with
caution. Since WebView can be customized, it creates
the opportunity to break out of the sandbox and bypass
the same origin policy.

WebView allows sandbox bypass in two different
scenarios:

1.	 JavaScript can invoke Java code.

2.	 Java code can invoke JavaScript.

Sample code to Invoke Java from JavaScript:

wv.addJavascriptInterface(new FileUtils(), “file”);
<script>
filename = ‘/data/data/com.Foudnstone/data.txt’;
file.write(filename, data, false);
</script>

Sample code to invoke JavaScript from Java:

String javascr = “javascript: var newscript=document.
createElement(\”script\”);”;
javascr += “newscript.src=\”http://www.foundstone.com\”;”;
javascr += “document.body.appendChild(newscript);”;
myWebView.loadUrl(javascr);

12 Secure Coding for Android Applications

WHITE PAPER

Now consider a scenario where there was link in the
WebView that redirected a user to a malicious website
or to load malicious JavaScript from another website.
Attacker-controlled code can use legitimate sandbox
bypass code similar to the examples above and access
all application data.

For the secure usage of the WebView, look for the
action that is being performed while the loadurl event
is triggered. There are two scenarios where the security
issue can be found.

1.	 Loadurl event is not overridden.

2.	 Loadurl event is overridden and the user is not
restricted to the base URL of the application in
Loadurl event.

To avoid security issues from the WebView, always
restrict users to the application domain using the code
shown below to prevents WebView security issues.

WebViewclient wvclient = New WebViewClient() {
// override the “shouldOverrideUrlLoading” hook.
public boolean shouldOverrideUrlLoading(WebView view,String url){
if(!url.startsWith(“http://clientlocation.com”)){
Intent i = new Intent(“Android,intent.action.VIEW”,Uri.parse(url));
startActivity(i);
// override the “onPageFinished” hook.
public void onPageFinished(WebView view, String url) { ...}
}
webView.setWebViewClient(wvclient);
// override the “onPageFinished” hook.
public void onPageFinished(WebView view, String url) { ...}
}
webView.setWebViewClient(wvclient);

Other best practices while coding with WebView are
listed as below:

■■ Do not call setJavaScriptEnabled() for WebView until
there is need for processing JavaScript. If JavaScript
is not enabled, then attacks like XSS, defacing, and
others will be eliminated.

■■ Compile the application against Android API level
equal to or more than 17. This API forces the developer
to add @JavascriptInterface to any method that will be
exposed to JavaScript. This also prevents access to OS
commands (via java.lang.Runtime).

■■ Send all traffic over SSL. Any traffic is easy to sniff and
manipulate using a man-in-the-middle attack. A hacker
cannot inject script via MITM and cannot break the
sandbox of WebView.

13 Secure Coding for Android Applications

WHITE PAPER

Secure usage of service
Services perform long-term operations that run in
the background—such as continuously monitoring to
determine whether Internet connectivity is there or not.
When a service is declared in AndroidManifext.xml,
it cannot be invoked by other applications because it
is not exported (this is the default behavior). However,
while declaring service—if intent filters are added—they
are exported by default. Below is an example:

<service Android:name=”.Search”
 Android:enabled=”true”
 Android:label=”@string/app_name”>
 <intent-filter>
 <action Android:name=”Foudnstone.
 intent.action.DO_SOME_ACTION” />
 <category Android:name=”Android.
intent.category.DEFAULT” />
 </intent-filter>
</service>

Refer to the AndroidManifest.xml file to see if
there have been any services defined with intent
filters and if the code snippet is similar to the example
provided above which is a security bug. Make sure
proper permission is required to access the service.
If no permission is required, then the service is not
secure and is exported so that it can be used by other
applications.

It is always safe to explicitly declare the
Android:exported attribute so that we know
how the service behaves. Along with this, define the
Android:permission attribute as an extra measure
so that any other application that needs to access

the service should have the corresponding <uses-
permission> declared in its manifest xml file.

Below is the snippet of code that shows how a service
can be declared with all security attributes:

<service Android:enabled=[“true” | “false”]
 Android:exported=[“true” | “false”]
 Android:icon=”drawable resource”
 Android:isolatedProcess=[“true” | “false”]
 Android:label=”string resource”
 Android:name=”string”
 Android:permission=”string”
 Android:process=”string” >
 . . .
</service>

Content providers
This provides the mechanism that is used to share
persistent data across applications. By default,
ContentProviders can be invoked and accessed
by any application if it is not set with permission.
If permission is set on ContentProvider in
AndroidManifest.xml file, then only those applications
that are granted permission can access that content
provider.

Always define both read and write permission as
needed. This is shown in the declaration below:

<provider
 android:name=”MyContactsProvider”
 android:authorities=”com.permission.test”
 android:readPermission=”android.permission.permRead”
 android:writePermission=”android.permission.permWrite”/>

14 Secure Coding for Android Applications

WHITE PAPER

Improper use of implicit intents
There are scenarios where an activity needs to be
started by Android OS at run-time and the developer
does not explicitly specify in code the activity to be run.
At run-time, Android OS will decide on the activity to
be run based on the best match of intent filters. This
is the scenario where implicit intents are used. In the
code below, Android OS will display users with all those
applications that can perform dial-up functionality. If
there is just one application, then it is invoked. If there
are multiple applications, then Android OS requests the
user to choose which application he wants to invoke.

Intent intent = new Intent(Intent.ACTION_DIAL, Uri.
parse(“tel:666-2890”));

The security issue here is that the application will not
be able to launch the required activity if it is not present
in any of the applications installed. Sometimes, it will
crash if proper exception management has not been
implemented. Also, proper security measures need to be
implemented so that the correct application is invoked
and a malicious application has not installed on the
Android device.

For secure usage of implicit intents, always check to see
if the intent will resolve using the code snippet below,
and install the proper application as desired instead of
forcing the user to choose one from Google Play store.

if (something needs to be checked)
 {
 //create the implicit intent
 String url = “http://www.test.com”;
 Intent i = new Intent(Intent.ACTION_VIEW);
 i.setData(Uri.parse(url));
 // Now check if there is an activity which can perform the action as
//desired by implicit intent
 PackageManager manager = getPackageManager();
 ComponentName comp = intent.resolveActivity(manager);
 if (comp == null) {

 // if there is no activity available to perform operation.
 // Downlaod required application from google play store and install
 // Upon succesfull installation start the activity
 }
 Else
{ // check for the safe known applications are present to launch
application
 //provide user with list of safe application for the action to be
performed
 startActivity(intent);
}
}

15 Secure Coding for Android Applications

WHITE PAPER

Code obfuscation
The Dalvik byte code can be easily reversed to obtain
Java code that is very close to the original Java code.
This aids the attacker in understanding application logic
and also gain deeper understanding of the application.
dex2jar and JD-Gui are two free tools that can be
used to reverse engineer Android applications. The
JD-Gui screenshot below shows a reverse-engineered
application and its Java source.

Figure 3. None of the function names, variable names, or class names
are obfuscated.

Code obfuscation is a method that involves mangling
code during the build process. The generated code is
difficult for humans to understand and increases the
amount of work required for reverse engineering.

Progaurd is a free Java obfuscator. It renames fields,
methods, and class with a name that is meaningless.

Excessive logging
Client-side data logging performed by Android
applications has not garnered much attention from a
security standpoint. However, during Android application
review, we often see sensitive user data like user names,
passwords, and account numbers written to application
logs. This information can be easily retrieved by an
attacker if he is able to gain access to the device.

Look for catch blocks that hold the key. Make sure
logging is performed in all the catch blocks, but no
sensitive information is written. Also, look for log4j
properties and a debug logging level in an application
which typically indicate an issue.

Perform proper exception management, and always
perform logging only to the extent required. Sensitive
data like account numbers and passwords should not be
logged.

The data items below should be logged:

■■ User name
■■ Time
■■ Action performed
■■ Application name

You should perform additional logging according to the
application and business requirements.

16 Secure Coding for Android Applications

WHITE PAPER

Use strong passwords and not PINs
Android applications usually require a PIN for
authentication instead of a password. The reason for
this is to make applications easier to use, as it is difficult
to enter a long password from a mobile device. However,
it is important to point out that PINs are easier to
bruteforce than complex passwords and can negatively
impact the overall security of the target application.

For better security, consider using passwords for your
applications instead of PINs. Best practices for creating
secure passwords are summarized below::

■■ Use a password and not a PIN.
■■ Choose a password that uses alphanumeric
characters and special characters.

■■ Choose a password that is at least seven characters in
length.

■■ Ensure that a proper password expiration policy is
implemented on server side.

■■ Do not allow users to reuse any of their last six
passwords.

Perform data validation
Data validation issues in Android are usually not
considered as serious during penetration testing or
while performing a code review. However, this is a
mistake. WebView becomes vulnerable to all browser
attacks because WebView itself is a browser instance
and has all the capabilities of a browser.

An Android application can be coded in Java or native
code, which is C++. When Java is used, many of the data

validation issues like buffer overflow, format string
issues, and others are eliminated, as the language itself
is not vulnerable. When using native code, special care
needs to be taken when data is read from an untrusted
source because it is vulnerable to issues like buffer
overflow, format string issues, and more.

When performing data validation code review, it is
necessary to identify the source and the sink. Source
refers to the place where the data is received. Sink
refers to the place where data is sent back to user. Once
complete flow from the source to sink is understood,
we can easily identify what kinds of issues there are, for
example, XSS, SQL injection, buffer overflow, and many
more data validation-related issues.

For more information on data validation issues, refer to
https://www.owasp.org.

Common mistakes
Other common issues that occur when Android
applications are being developed and that are similar to
the web application penetration testing are mentioned
below:

■■ Logout of a user in an Android application is usually
done only on the client side by moving him to new
screen. The application should also send an explicit
logout request to the server to terminate server-side
sessions.

■■ Session ID or sensitive data should not be sent in
request URLs.

■■ Inadequate error-handling leads to sensitive
information disclosure.

17 Secure Coding for Android Applications

WHITE PAPER

■■ Data entered via mobile applications, including
Android applications, is often persisted in the backend
servers without validation. The persisted data is then
accessed via the web application, resulting in security
issues like XSS, malicious URL injection, and others.

■■ Android applications are also vulnerable to web-
related attacks like XSS, CSRF, XFS, and others when
WebView is used.

■■ Session ID timeout is usually very long or sessions do
not expire. Invalidate session IDs on both the client
and server side after 30 minutes of inactivity.

References
■■ Professional-Android-4-Application-Development by
Reto Meier

■■ http://developer.Android.com/
■■ http://stackoverflow.com/questions/7295604/

how-to-set-an-alarm-in-android-java
■■ http://proguard.sourceforge.net
■■ http://www.cis.syr.edu/~wedu/Research/paper/

webview_acsac2011.pdf
■■ http://developer.Android.com/training/articles/

security-tips.html
■■ http://stackoverflow.com/questions/4062838/
intent-filter-within-a-service

■■ http://blog.opensecurityresearch.com/2012/04/
acquiring-volatile-memory-from-Android.html

■■ http://bgr.com/2013/03/13/android-activation-
growth-analysis-373572/

About the Author
Naveen Rudrappa is a senior security consultant at
McAfee Foundstone Professional Services. Rudrappa
has more than seven years of experience in information
security. He has also completed certificates such
CEH and SCJP. Rudrappa focuses on web application
penetration testing, thick client testing, mobile
application testing, web services testing, code review,
threat modeling, external network penetration testing,
and other service lines.

About McAfee Foundstone
Professional Services

McAfee Foundstone Professional
Services, a division of McAfee, offers
expert services and education to
help organizations continuously
and measurably protect their
most important assets from the
most critical threats. Through a
strategic approach to security,
McAfee Foundstone identifies
and implements the right balance
of technology, people, and
process to manage digital risk and
leverage security investments
more effectively. The company’s
professional services team consists
of recognized security experts
and authors with broad security
experience with multinational
corporations, the public sector,
and the US military.
www.foundstone.com.

http://www.foundstone.com

About McAfee
McAfee is one of the world’s leading independent
cybersecurity companies. Inspired by the power of
working together, McAfee creates business and
consumer solutions that make the world a safer place.
By building solutions that work with other companies’
products, McAfee helps businesses orchestrate
cyber environments that are truly integrated, where
protection, detection and correction of threats happen
simultaneously and collaboratively. By protecting
consumers across all their devices, McAfee secures
their digital lifestyle at home and away. By working
with other security players, McAfee is leading the effort
to unite against cybercriminals for the benefit of all.

www.mcafee.com.

McAfee and the McAfee logo are trademarks or registered trademarks of McAfee, LLC or its subsidiaries in the US and other countries.
Other marks and brands may be claimed as the property of others. Copyright © 2017 McAfee, LLC. 61697wp_secure-coding-android_0315
MARCH 2015

2821 Mission College Blvd.
Santa Clara, CA 95054
888.847.8766
www.mcafee.com

18 Secure Coding for Android Applications

http://www.mcafee.com

	Android Application Components
	Activity
	Intents
	Service
	Content Providers
	WebView
	Permissions

	Secure Coding Recommendations
	Lock-down application permissions
	Handle Broadcast Messages carefully
	Broadcast Messages for Inter-Process Communication (IPC)
	Insecure storage
	Insecure storage in process memory
	Protect pending intents
	Improper usage of WebView
	Secure usage of service
	Content providers
	Improper use of implicit intents

	References
	About the Author

