
Secure Coding for 
Android Applications

1 Secure Coding for Android Applications

WHITE PAPER



2 Secure Coding for Android Applications

WHITE PAPER

Table of Contents Author

This white paper was written by:
Naveen Rudrapp, Senior Security 
Consultant, McAfee® Foundstone® 
Professional Services

3 Android Application Components
3	 	 Activity
4	 	 Intents
4	 	 Service
4	 	 Content	Providers
4  WebView
4	 	 Permissions
4 Secure Coding Recommendations
4	 	 Lock-down	application	permissions
7	 	 Handle	Broadcast	Messages	carefully	
8	 	 Broadcast	Messages	for	Inter-Process	Communication	(IPC)
9	 	 Insecure	storage
10	 	 Insecure	storage	in	process	memory
12	 	 Protect	pending	intents
13	 	 Improper	usage	of	WebView	
15	 	 Secure	usage	of	service
16	 	 Content	providers
16	 	 Improper	use	of	implicit	intents
18	 	 Code	obfuscation
19	 	 Excessive	logging
19	 	 Use	strong	passwords	and	not	PINs
20	 	 Perform	data	validation
20	 	 Common	mistakes
21 References
21 About the Author
21 About McAee Foundstone Professional Services



Android Application Components
Before	diving	deeply	into	Android’s	security	options,	it	
is	necessary	to	take	a	high-level	overview	of	the	major	
components	of	an	Android	application	to	understand	
how	the	different	pieces	fit	together.	Please	refer	
to	Android	developer	documentation	for	extensive	
information	about	various	components	discussed	below.

Activity
In	Android	development	terms,	an	“Activity”	refers	to	
single,	focused	window	that	interacts	with	a	user	and	
provides	functionality.	An	activity	forms	the	fundamental	
building	blocks	of	the	application.	

An	activity	has	the	following	states:

 ■ Active:	When	an	activity	is	interacting	with	a	user,	it	is	
at	the	top	of	the	activity	stack	and	visible	to	the	user.	

Android	will	kill	any	other	services	or	activities	on	the	
stack	to	keep	the	active	activity	alive.

 ■ Paused: This	is	a	state	where	an	activity	is	not	in	focus	
but	is	actually	visible	to	user.	For	example,	this	state	
is	reached	when	a	pop-up	appears	when	activity	is	
running.

 ■ Stopped: This	is	the	state	where	activity	is	not	visible	
to	user,	but	resides	in	memory	and	retaining	all	data.	
This	activity	will	be	killed	to	save	memory	if	needed	for	
an	active	activity.

 ■ Inactive: An	activity	just	before	launching,	after	it	has	
been	killed,	is	said	to	be	in	an	inactive state.	

Knowing	about	the	states	of	an	activity	allows	a	
developer	to	understand	how	data	is	handled	and	aids	
in	implementing	activities	securely.

WHITE PAPER

Secure	Coding	for	Android Applications

3 Secure Coding for Android Applications

Smartphones	are	more	popular	than	ever.	One	of	the	reasons	for	this	is	the	fact	that	
the	Google	Android	operating	system	(OS)	is	a	platform	that	enables	developers	to	write	
applications	and	distribute	them	for	free	in	an	open	market.	According	to	the	latest	studies,	
more	than	one	billion	Android	devices	have	been	activated	with	an	astonishing	growth	of	
1.4	million	devices	per	day.	With	this	sort	of	growth,	it	is	absolutely	necessary	for	developers	
to	understand	how	to	create	secure	Android	applications.	This	white	paper	focuses	on	
secure	coding	practices	for	Android	applications.

Connect With Us

https://securingtomorrow.mcafee.com/
https://twitter.com/mcafee_business
https://www.linkedin.com/company/mcafee/
http://www.facebook.com/mcafee
http://www.youtube.com/mcafee
http://www.slideshare.net/mcafee


4 Secure Coding for Android Applications

WHITE PAPER

Intents
An	intent	is	commonly	used	to	start	an	activity	or	
service.	Intents	can	be	broadcast	and	received	within	
the	application	itself	and	with	other	applications.	This	
allows	for	great	flexibility	in	application	development,	
information	sharing,	and	the	ability	to	trigger	operations	
in	other	applications.

There	are	two	main	types	of	intents:

 ■ Explicit intents: Explicit	intents	specify	the	exact	class	
that	needs	to	be	invoked	to	launch	an	activity	within	
the	application.	These	are	limited	to	the	application	
context	in	which	they	are	run.

 ■ Implicit intents: These	are	the	intents	that	hold	
information	about	the	type	of	operation	to	be	
performed.	It’s	up	to	the	OS	to	decide	the	best	
operation	based	on	the	information	provided.

Service
A	service	represents	a	background	operation	or	an	
operation	that	does	not	require	user	interaction	and	
takes	a	lengthy	amount	of	time	to	complete.	These	
operations	are	performed	without	affecting	the	main	
application	running	on	the	front	end.	Service	continues	
to	run	in	background,	even	when	application	is	
not running.	

Content Providers
Content	providers	store	data	persistently.	They	
manage	the	storage	of	application	data	and	interact	
with	a	number	of	local	SQL	databases.	Content	
providers	also	provide	the	best	means	to	share	data	
between applications.	

WebView
WebViews	act	like	a	web	browser	to	display	HTML	
content	to	the	user.	Android’s	WebKit	engine	is	used	to	
display	web	pages.	Any	vulnerability	found	in	WebKit	
directly	impacts	the	WebView.	This	component	allows	
a	user	to	navigate	forward	and	backward	through	the	
history,	zoom	in	and	out,	and	perform	text	searches,	just	
like	Internet	Explorer,	Firefox,	or	any	other	browser.	

Permissions
The	core	security	of	an	application	is	defined	by	its	
permissions.	The	extent	to	which	an	application	
can	perform	an	action	is	limited	to	the	permissions	
defined	in	its	AndroidManifest.xml.	By	default,	
every	application	is	sandboxed	by	the	OS	and	restricts	
access	to	the	data	of	another	application.	At	the	time	of	
application	installation,	the	user	is	presented	with	the	
list	of	permissions	that	are	required	by	the	application.	
Once	the	user	grants	those	permissions,	only	then	the	
application	will	be	installed.	Granting	of	permissions	
dynamically	at	runtime	is	not	supported.

Secure Coding Recommendations
So	far,	we	have	covered	the	various	Android	components	
used	in	an	application.	In	this	section,	we will	cover	
secure	coding	recommendations	and	the	associated	
client-side	application	attacks.

Lock-down application permissions
It	is	necessary	to	follow	the	principle	of	least	privilege	
when	assigning	permissions.	Permissions	should	not	
be	assigned	unless	they	are	required.	The	application	
should	be	granted	only	the	minimum	required	
permissions	at	the	architecture	level.	For	instance,	



5 Secure Coding for Android Applications

WHITE PAPER

READWRITE	permissions	should	not	be	granted	
when	only	READ	permissions	are	required.	This	is	a	
common	mistake	made	by	developers	due	to	a	lack	of	
understanding	of	the	functionality	at	the	application.	
Examples	like	these	underscore	the	importance	
of	strong	application	development	planning	and	
requirements	documentation.	

For	example,	the	Android:protectionLevel 
element	of	the	AndroidManifest.xml	file	defines	
the	protection/risk	level	associated	with	the	installed	
application.	It	also	provides	the	procedure	the	OS	
should	follow	to	determine	whether	the	permission	
can	be	granted.	When	the	value	of	the	parameter	is	
dangerous,	the	application,	when	installed,	gains	
permission	to	access	user	data	and	to	control	the	device.	
Developers	should	exercise	extreme	caution	while	
assigning	applications	with	high-risk	permissions.

File permissions
File	permissions	apply	to	files	stored	on	external	
storage.	Any	file	created	using	openFileOutput	is	
private	to	the	application	and	cannot	be	accessed	
by	other	applications.	Pay	close	attention	before	
providing	a	file	with	the	MODE _ WORLD _ READABLE or 
MODE _ WORLD _ WRITABLE	permissions.	This	allows	
other	applications	to	access	the	file.	Do	not	provide	
the	writable	option	until	it	is	required	to	enforce	the	
principle	of	least	privilege.	The	standard	way	to	share	a	
file	between	applications	is	to	use	Content Provider.	

Permissions	can	be	defined	at	two	levels:	in	the	
AndroidManifest.xml	file	and	in	program’s	code.	
Both	cases	need	to	be	analyzed	for	security	issues.

1.	 Permission	defined	in	AndroidManifest.xml	are	
shown	in	Figure	1.

Figure 1. Image shows permissions defined in AndroidManifest.XML file.



6 Secure Coding for Android Applications

WHITE PAPER

2.	 In	code,	permission	defined	for	a	file	is	as	below:

String OUTPUT_FILE = “file.txt”;
FileOutputStream fos = openFileOutput(OUTPUT_
FILE,  
Context.MODE_WORLD_WRITEABLE);

Custom permissions
Another	important	consideration	is	the	use	of	custom	permissions.	These	permissions	are	described	to	the	user	via	
a	permission	description	within	the	Android:description	tag	of		AndroidManifest.xml.	Care	needs	to	be	taken	to	
ensure	the	description	is	adequate	to	provide	the	layperson	user	with	information	that	details	what	permission	is	
being	granted.	

Below	is	a	code	sample	showing	the	description	defined	for	custom	permission	used:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:Android=”http://schemas.Android.com/apk/res/Android”
    package=”com.testpackage.permissiontestclient”
    Android:versionCode=”1”
    Android:versionName=”1.0” >

    <uses-sdk Android:minSdkVersion=”10” />
    <permission Android:name=”com.testpaccourierkage.mypermission” 
Android:label=”my_permission” Android:protectionLevel=”dangerous” 
Android:description=”@string/detonate_description”></permission>
<application>
   <activity
            Android:permission=”com.testpackage.mypermission”
            Android:name=”.PermissionTestClientActivity”
            Android:label=”@string/app_name” >
  </activity>
</application>
</manifest>



7 Secure Coding for Android Applications

WHITE PAPER

Handle Broadcast Messages carefully 
To	handle	event-driven	tasks,	an	application	can	register	
a	broadcast	receiver	that	executes	a	function	once	
it’s	passed	an	intent	that	matches	specified	criteria.	
Applications	can	send	broadcast	intents,	which	allow	
another	application	to	receive	it	and	process	its	data.	

There	are	two	ways	to	register	a	broadcast	
receiver:	within	the	application	code	and	within	the	
AndroidManifest.xml:	

Registering	a	broadcast	receiver	within	the	application	
code:	

registerReceiver(new BroadcastReceiver(){

@Override
public void onReceive(Context context, Intent 
intent) {…}
}, null);

Registering	a	broadcast	receiver	within	the	
AndroidManifest.xml:

<receiver Android:name=”receiver” >
<intent-filter>
<action Android:name=”com.Myapplciation.
Android.mybroadcast” />
</intent-filter>
</receiver>

Once	the	class	that	receives	broadcast	intents	has	been	
identified,	it	must	be	thoroughly	reviewed	to	ensure	
sound	development	practices.	

Null values passed to broadcast receivers 
One	common	area	of	concern	involves	variables	
containing	null	values	sent	within	a	broadcast	intent.	
Application	developers	commonly	forget	to	consider	this	
possibility	which	may	result	in	a	denial-of-service	(DoS)	
condition.	

public class MyBroadcastReceiver extends BroadcastReceiver {
@Override
 public void onReceive(Context context, Intent intent) {
 //Code implemented here
 //check if intent and variables value in it is null before using it 
 //and proper security exceptions are in place to handle it  
 //without crashing the application
  }
 }

It	is	important	to	check	intent	and	to	make	sure	that	
variables	in	intent	are	for	null	in	both	of	the	cases	
discussed	above	before	performing	any	operation	
to	ensure	null	protection	is	in	place.	Any	object	or	
data	received	from	the	broadcast	should	be	checked	
for	invalid	data	or	exceptions	before	using	it	in	an	
application.	



8 Secure Coding for Android Applications

WHITE PAPER

Broadcast Messages for Inter-Process 
Communication (IPC)
The	nature	of	broadcast	messages	permits	any	
application	to	receive	a	broadcasted	Intent.	If	broadcast	
messages	are	used	for	IPC,	then	a	malicious	application	
may	be	able	to	gain	access	to	another	application’s	data.	
This	is	often	a	common	occurrence	that	demonstrates	
the	lack	of	understanding	around	broadcast	messages.	

The	following	functions	send	broadcast	messages	and	
are	vulnerable	to	IPC	sniffing:
sendBroadcast(intent); 
sendStickyBroadcast(intent);

To	mitigate	this	issue,	use	intents	with	assigned	
permissions.	This	can	be	achieved	in	two	ways,	shown	
below.	A	malicious	application	cannot	receive	an	intent	if	
it	is	not	granted	the	required	permissions.

Permission	defined	in	code:
String requiredPermission = 

“com.Foundstone.MY _ BROADCAST _
PERMISSION _ Defined”;

sendBroadcast(intent, 
requiredPermission);

sendOrderedBroadcast(intent, 
requiredPermission);

Permission	defined	in	AndroidManifest.xml	file:

<receiver
Android:name=”com.Foundstone.
NameForOrderedReceiver”
Android:permission=”com.Foundstone.MY_
BROADCAST_PERMISSION_Defined”>

<intent-filter>
<action Android:name=”com.Foundstone.
action.ACTION_CLASS_FOR_ORDERED_BROADCAST” 
/>
</intent-filter>

</receiver>

Using	this	method,	an	intent	will	be	delivered	to	those	
registered	receivers	who	are	granted	the	required	
permission.

Use	the	local	broadcast	manager	if	the	intent	needs	to	
be	broadcast	locally.	The	local	broadcast	manager	allows	
intents	to	be	broadcast	locally	within	the	application	so	
no	other	application	can	gain	unauthorized	access	to	
application	data.	

The	code	below	shows	how	a	local	broadcast	is	sent:
LocalBroadcastManager lbm = 
LocalBroadcastManager.getInstance(this);
lbm.sendBroadcast(new Intent(ANY _
ACTION _ TO _ BE _ PERFORMED));



9 Secure Coding for Android Applications

WHITE PAPER

Insecure storage
Application	data	should	be	stored	in	two	folders:

 ■ /data/data/<package name of application>
 ■ /sdcard

Data	stored	in	both	of	these	directories	behave	
differently	from	a	security	standpoint.	Data	that	is	stored	
in /data/data/<package name of application> 
cannot	be	accessed	by	another	application	unless	the	
application	explicitly	provides	permissions	or	if	the	
Android	device	is	rooted.	Data	that	is	stored	in	/sdcard 
can	be	accessed	by	any	application	without	the	need	for	
any	special	permission	or	rooting.	Hence,	it	is	common	
for	malicious	applications	to	access	data	in	/sdcard.

When	evaluating	an	application’s	storage	usage,	
ensure	that	both	online	and	offline	functionality	of	
the	application	is	evaluated.	Look	specifically	for	code	
that	allows	storage	of	the	data	locally	and	ensure	that	
no	sensitive	data	is	stored	on	the	client	side.	At	the	
architecture	level,	try	to	minimize	the	sensitive	data	that	
needs	to	be	stored	on	the	device.	If	any	data	needs	to	be	
stored,	then	encrypt	it	using	a	strong	algorithm	prior	to	
storage.

WebView Caching
WebView	class	allows	HTML	data	gets	cached	locally.	
If	sensitive	information	is	requested	by	WebView,	then	
consider	using	clearCache()to	delete	any	sensitive	
data	stored	locally.	Also	use	“no-cache”	to	instruct	the	
Android	WebKit	not	to	cache	data.	

PreferenceActivity storage
PreferenceActivity	allows	a	user	to	store	data	

locally	that	can	be	read	by	all	the	classes	in	the	
application.	When	this	activity	is	used,	an	XML	file	
is	created	in	/data/data/<Package name of 
application>.	This	data	persists	even	after	the	
application	is	closed.	If	the	mobile	device	is	stolen,	then	
data	stored	within	the	XML	file	can	be	retrieved	after	
rooting	the	device.	

Insecure storage in process memory
Data	processed	by	the	application	may	be	stored	
within	memory	longer	than	necessary,	which	makes	
it	more	susceptible	to	attack.	An	attacker	with	access	
to	the	phone	may	be	able	to	dump	the	memory	of	the	
process	to	gain	access	to	sensitive	information	such	as	
usernames,	passwords,	and	other	data.	

Analyze	the	classes	that	take	username,	password,	
and	account	number	as	input.	Try	to	determine	if	the	
values	are	cleared	in	the	memory	after	use.	If	not,	
the	application	may	expose	sensitive	information	if	a	
memory	dump	can	be	obtained	by	an	attacker.

The	Application	class	is	another	important	class	to	
be	re-initialized	with	junk	value	once	the	application	is	
closed.	This	class	is	shared	across	all	the	classes	of	same	
application	and	remains	active	even	after	application	
is	closed.	Hence,	any	data	stored	in	this	class	can	be	
obtained	via	dumping	memory.

To	manually	validate	that	sensitive	information	is	cleared	
from	memory,	log	into	the	application,	execute	any	
operation	that	takes	in	sensitive	data	as	input,	and	
perform	a	memory	dump	to	view	if there	is	any	sensitive	
present	in	it.



10 Secure Coding for Android Applications

WHITE PAPER

Steps	to	obtain	a	memory	dump	and	analysis:

1.	 Obtain	the	memory	dump	of	the	target	application	
using	the	ddms.bat	tool	after	logging	out	of	the	
application.	This	tool	is	present	in	the	tools	directory	
of	the	Android	SDK.

2.	 Convert	it	to	readable	format	using	hprof-conv.
exe.	This	tool	is	present	in	the	tools	directory	of	the	
Android	SDK. 
	 Command:	hprof-conv.exe source dest

3.	 Open	the	file	obtained	in	the	Eclipse	memory	analyzer.

4.	 Click	on	Open	Dominator	for	entIre	heap.

5.	 Click	on	“Group	result	by	Group	by	package”.

6.	 Navigate	to	the	class	that	holds	sensitive	data,	and	
see	if	the	data	is	still	available	in	clear	text	and	if	it	can	
be retrieved.

Figure 2. Username and password stored in variables and retrieved via 
memory dumping once user has logged out.

The	Dalvik	runtime	allows	garbage	collection,	but	this	
does	not	allow	a	developer	not	to	consider	memory	
management.	It	is	never	advisable	for	any	variable	to	
hold	sensitive	information	in	it	even	when	the	user	is	
logged	in.	This	is	especially	true	when	the	user	logs	
off	the	application.	At	that	point,	all	variables	holding	
sensitive	information	should	be	cleared	by	initializing	
them	to	some	junk	value.

Protect pending intents
The	pending	intents	function	allows	the	intent	in	your	
application	to	be	invoked	by	another	application.	Just	
invoking	the	intent	is	not	the	issue.	The	issue	is	that	the	
application	that	invokes	the	intent	also	executes	at	the	
same	permission	level	as	that	of	the	application	that	had	
the	pending	intent	to	be	invoked.

By	allowing	other	applications	to	invoke	
PendingIntent	in	our	application,	we	are	allowing	
the	other	applications	to	execute	at	the	same	privilege	
as	that	of	our	application.	Hence,	we	should	be	careful	
about	trust	and	operation	performed	by	third-party	
applications	using	PendingIntent.

Look	for	the	code	snippets	as	shown	below	while	
checking	for	secure	usage	of	pending	intent—you	
can	identify	that	intent	is	being	handed	over	to	the	
alarmManager	application:



11 Secure Coding for Android Applications

WHITE PAPER

Intent myIntent = new 
Intent(AndroidAlarmService.this,  
MyAlarmService.class);
pendingIntent = PendingIntent.
getService(AndroidAlarmService.this, 0, 
myIntent, 0);
AlarmManager alarmManager =  
(AlarmManager)getSystemService(ALARM_
SERVICE);
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.
currentTimeMillis());
calendar.add(Calendar.SECOND, 10);
alarmManager.set(AlarmManager.RTC_WAKEUP, 
calendar.getTimeInMillis(), pendingIntent);

Once	identified,	check	to	see	if	the	intent	is	handed	
over	to	a	third-party	application.	Now	try	to	figure	out	
what	the	third-party	application	does	with	the	pending	
intent	(that	is,	alaramManager).	Here	it	is	necessary	to	
understand	that	the	trust	is	based	on	the	third-party	
application	to	determine	if	any	security	issues	exist.

PendingIntents	can	be	created	using	three	different	
functions;	therefore,	four	types	of	code	need	to	be	
analyzed:

 ■ getActivity(Context, int, Intent, int)

 ■ getActivities(Context, int, Intent[], int)

 ■ getBroadcast(Context, int, Intent, int)

 ■ getService(Context, int, Intent, int)

The	best	and	simplest	approach	is	to	find	an	alternative	
for	the	pending	intent	which	is	as	good	as	eliminating	
risk.	If	a	pending	intent	is	an	application	requirement,	

make	sure	that	only	a	trusted	application	receives	it.	
This	leaves	no	room	for	that	intent	to	be	used	by	an	
untrusted	application.

Improper usage of WebView 
The	WebView	class	is	one	of	the	most	powerful	classes,	
and	it	renders	web	pages	inside	a	normal	browser.	It	
also	allows	applications	to	interact	with	WebView	by	
adding	a	hook,	monitoring	changes	being	made,	add	
JavaScript,	and	more.	Even	though	this	seems	like	a	great	
feature,	it	brings	in	security	loopholes	if	not	used	with	
caution.	Since	WebView	can	be	customized,	it	creates	
the	opportunity	to	break	out	of	the	sandbox	and	bypass	
the	same	origin	policy.

WebView	allows	sandbox	bypass	in	two	different	
scenarios:	

1.	 JavaScript	can	invoke	Java	code.

2.	 Java	code	can	invoke	JavaScript.

Sample	code	to	Invoke	Java	from	JavaScript:

wv.addJavascriptInterface(new FileUtils(), “file”);
<script>
filename = ‘/data/data/com.Foudnstone/data.txt’;
file.write(filename, data, false);
</script>

Sample	code	to	invoke	JavaScript	from	Java:

String javascr = “javascript: var newscript=document.
createElement(\”script\”);”;
javascr += “newscript.src=\”http://www.foundstone.com\”;”;
javascr += “document.body.appendChild(newscript);”;
myWebView.loadUrl(javascr);



12 Secure Coding for Android Applications

WHITE PAPER

Now	consider	a	scenario	where	there	was	link	in	the	
WebView	that	redirected	a	user	to	a	malicious	website	
or	to	load	malicious	JavaScript	from	another	website.	
Attacker-controlled	code	can	use	legitimate	sandbox	
bypass	code	similar	to	the	examples	above	and	access	
all	application	data.	

For	the	secure	usage	of	the	WebView,	look	for	the	
action	that	is	being	performed	while	the	loadurl	event	
is	triggered.	There	are	two	scenarios	where	the	security	
issue	can	be	found.

1.	 Loadurl	event	is	not	overridden.

2.	 Loadurl	event	is	overridden	and	the	user	is	not	
restricted	to	the	base	URL	of	the	application	in	
Loadurl	event.

To	avoid	security	issues	from	the	WebView,	always	
restrict	users	to	the	application	domain	using	the	code	
shown	below	to	prevents	WebView	security	issues.

WebViewclient wvclient = New WebViewClient() {
// override the “shouldOverrideUrlLoading” hook.
public boolean shouldOverrideUrlLoading(WebView view,String url){
if(!url.startsWith(“http://clientlocation.com”)){
Intent i = new Intent(“Android,intent.action.VIEW”,Uri.parse(url));
startActivity(i);
// override the “onPageFinished” hook.
public void onPageFinished(WebView view, String url) { ...}
}
webView.setWebViewClient(wvclient);
// override the “onPageFinished” hook.
public void onPageFinished(WebView view, String url) { ...}
}
webView.setWebViewClient(wvclient);

Other	best	practices	while	coding	with	WebView	are	
listed	as	below:

 ■ Do	not	call	setJavaScriptEnabled()	for	WebView	until	
there	is	need	for	processing	JavaScript.	If	JavaScript	
is	not	enabled,	then	attacks	like	XSS,	defacing,	and	
others	will	be eliminated.

 ■ Compile	the	application	against	Android	API	level	
equal	to	or	more	than	17.	This	API	forces	the	developer	
to	add	@JavascriptInterface	to	any	method	that	will	be	
exposed	to	JavaScript.	This	also	prevents	access	to	OS	
commands	(via	java.lang.Runtime).

 ■ Send	all	traffic	over	SSL.	Any	traffic	is	easy	to	sniff	and	
manipulate	using	a	man-in-the-middle	attack.	A	hacker	
cannot	inject	script	via	MITM	and	cannot	break	the	
sandbox	of	WebView.



13 Secure Coding for Android Applications

WHITE PAPER

Secure usage of service
Services	perform	long-term	operations	that	run	in	
the	background—such	as	continuously	monitoring	to	
determine	whether	Internet	connectivity	is	there	or	not.	
When	a	service	is	declared	in	AndroidManifext.xml,	
it	cannot	be	invoked	by	other	applications	because	it	
is	not	exported	(this	is	the	default	behavior).	However,	
while	declaring	service—if	intent	filters	are	added—they	
are	exported	by	default.	Below	is	an	example:

<service Android:name=”.Search” 
    Android:enabled=”true”
    Android:label=”@string/app_name”> 
    <intent-filter>
        <action Android:name=”Foudnstone. 
        intent.action.DO_SOME_ACTION” />
        <category Android:name=”Android.
intent.category.DEFAULT” />
    </intent-filter>
</service>

Refer	to	the	AndroidManifest.xml	file	to	see	if	
there	have	been	any	services	defined	with	intent	
filters	and	if	the	code	snippet	is	similar	to	the	example	
provided	above	which	is	a	security	bug.	Make	sure	
proper	permission	is	required	to	access	the	service.	
If	no	permission	is	required,	then	the	service	is	not	
secure	and	is	exported	so	that	it	can	be	used	by	other	
applications.

It	is	always	safe	to	explicitly	declare	the	
Android:exported	attribute	so	that	we	know	
how	the	service	behaves.	Along	with	this,	define	the	
Android:permission	attribute	as	an	extra	measure	
so	that	any	other	application	that	needs	to	access	

the	service	should	have	the	corresponding	<uses-
permission>	declared	in	its	manifest	xml	file.

Below	is	the	snippet	of	code	that	shows	how	a	service	
can	be	declared	with	all	security	attributes:

<service Android:enabled=[“true” | “false”]
         Android:exported=[“true” | “false”]
         Android:icon=”drawable resource”
         Android:isolatedProcess=[“true” | “false”]
         Android:label=”string resource”
         Android:name=”string”
         Android:permission=”string”
         Android:process=”string” >
    . . .
</service>

Content providers
This	provides	the	mechanism	that	is	used	to	share	
persistent	data	across	applications.	By	default,	
ContentProviders	can	be	invoked	and	accessed	
by	any	application	if	it	is	not	set	with	permission.	
If	permission	is	set	on	ContentProvider in 
AndroidManifest.xml	file,	then	only	those	applications	
that	are	granted	permission	can	access	that	content	
provider.

Always	define	both	read	and	write	permission	as	
needed.	This	is	shown	in	the	declaration	below:

<provider
              android:name=”MyContactsProvider”
              android:authorities=”com.permission.test”
              android:readPermission=”android.permission.permRead”
              android:writePermission=”android.permission.permWrite”/>



14 Secure Coding for Android Applications

WHITE PAPER

Improper use of implicit intents
There	are	scenarios	where	an	activity	needs	to	be	
started	by	Android	OS	at	run-time	and	the	developer	
does	not	explicitly	specify	in	code	the	activity	to	be	run.	
At	run-time,	Android	OS	will	decide	on	the	activity	to	
be	run	based	on	the	best	match	of	intent	filters.	This	
is	the	scenario	where	implicit	intents	are	used.	In	the	
code	below,	Android	OS	will	display	users	with	all	those	
applications	that	can	perform	dial-up	functionality.	If	
there	is	just	one	application,	then	it	is	invoked.	If	there	
are	multiple	applications,	then	Android	OS	requests	the	
user	to	choose	which	application	he	wants	to invoke.

Intent intent = new Intent(Intent.ACTION_DIAL, Uri.
parse(“tel:666-2890”));

The	security	issue	here	is	that	the	application	will	not	
be	able	to	launch	the	required	activity	if	it	is	not	present	
in	any	of	the	applications	installed.	Sometimes,	it	will	
crash	if	proper	exception	management	has	not	been	
implemented.	Also,	proper	security	measures	need	to	be	
implemented	so	that	the	correct	application	is	invoked	
and	a	malicious	application	has	not	installed	on	the	
Android	device.

For	secure	usage	of	implicit	intents,	always	check	to	see	
if	the	intent	will	resolve	using	the	code	snippet	below,	
and	install	the	proper	application	as	desired	instead	of	
forcing	the	user	to	choose	one	from	Google	Play	store.

if (something needs to be checked)
 {
  //create the implicit intent
  String url = “http://www.test.com”;
  Intent i = new Intent(Intent.ACTION_VIEW);
  i.setData(Uri.parse(url));
  // Now check if there is an activity which can perform the action as 
//desired by implicit intent
  PackageManager manager = getPackageManager();
  ComponentName comp = intent.resolveActivity(manager);
  if (comp == null) {

  // if there is no activity available to perform operation.
  // Downlaod required application from google play store and install
  // Upon succesfull installation start the activity
  }
  Else
{  // check for the safe known applications are present to launch 
application
  //provide user with list of safe application for the action to be 
performed 
  startActivity(intent);
}
}



15 Secure Coding for Android Applications

WHITE PAPER

Code obfuscation
The	Dalvik	byte	code	can	be	easily	reversed	to	obtain	
Java	code	that	is	very	close	to	the	original	Java	code.	
This	aids	the	attacker	in	understanding	application	logic	
and	also	gain	deeper	understanding	of	the	application.	
dex2jar	and	JD-Gui	are	two	free	tools	that	can	be	
used	to	reverse	engineer	Android	applications.	The	
JD-Gui	screenshot	below	shows	a	reverse-engineered	
application	and	its Java	source.

Figure 3. None of the function names, variable names, or class names 
are obfuscated.

Code	obfuscation	is	a	method	that	involves	mangling	
code	during	the	build	process.	The	generated	code	is	
difficult	for	humans	to	understand	and	increases	the	
amount	of	work	required	for	reverse	engineering.

Progaurd	is	a	free	Java	obfuscator.	It	renames	fields,	
methods,	and	class	with	a	name	that	is	meaningless.

Excessive logging
Client-side	data	logging	performed	by	Android	
applications	has	not	garnered	much	attention	from	a	
security	standpoint.	However,	during	Android	application	
review,	we	often	see	sensitive	user	data	like	user	names,	
passwords,	and	account	numbers	written	to	application	
logs.	This	information	can	be	easily	retrieved	by	an	
attacker	if	he	is	able	to	gain	access	to	the	device.

Look	for	catch	blocks	that	hold	the	key.	Make	sure	
logging	is	performed	in	all	the	catch	blocks,	but	no	
sensitive	information	is	written.	Also,	look	for	log4j 
properties	and	a	debug	logging	level	in	an	application	
which	typically	indicate	an	issue.

Perform	proper	exception	management,	and	always	
perform	logging	only	to	the	extent	required.	Sensitive	
data	like	account	numbers	and	passwords	should	not	be	
logged.

The	data	items	below	should	be	logged:

 ■ User	name
 ■ Time
 ■ Action	performed
 ■ Application	name

You	should	perform	additional	logging	according	to	the	
application	and	business	requirements.



16 Secure Coding for Android Applications

WHITE PAPER

Use strong passwords and not PINs
Android	applications	usually	require	a	PIN	for	
authentication	instead	of	a	password.	The	reason	for	
this	is	to	make	applications	easier	to	use,	as	it	is	difficult	
to	enter	a	long	password	from	a	mobile	device.	However,	
it	is	important	to	point	out	that	PINs	are	easier	to	
bruteforce	than	complex	passwords	and	can	negatively	
impact	the	overall	security	of	the	target	application.

For	better	security,	consider	using	passwords	for	your	
applications	instead	of	PINs.	Best	practices	for	creating	
secure	passwords	are	summarized	below::

 ■ Use	a	password	and	not	a	PIN.
 ■ Choose	a	password	that	uses	alphanumeric	
characters	and	special	characters.

 ■ Choose	a	password	that	is	at	least	seven	characters	in	
length.

 ■ Ensure	that	a	proper	password	expiration	policy	is	
implemented	on	server	side.

 ■ Do	not	allow	users	to	reuse	any	of	their	last	six	
passwords.

Perform data validation
Data	validation	issues	in	Android	are	usually	not	
considered	as	serious	during	penetration	testing	or	
while	performing	a	code	review.	However,	this	is	a	
mistake.	WebView	becomes	vulnerable	to	all	browser	
attacks	because	WebView	itself	is	a	browser	instance	
and	has	all	the	capabilities	of	a browser.

An	Android	application	can	be	coded	in	Java	or	native	
code,	which	is	C++.	When	Java	is	used,	many	of	the	data	

validation	issues	like	buffer	overflow,	format	string	
issues,	and	others	are	eliminated,	as	the	language	itself	
is	not	vulnerable.	When	using	native	code,	special	care	
needs	to	be	taken	when	data	is	read	from	an	untrusted	
source	because	it	is	vulnerable	to	issues	like	buffer	
overflow,	format	string	issues,	and	more.

When	performing	data	validation	code	review,	it	is	
necessary	to	identify	the	source	and	the	sink.	Source	
refers	to	the	place	where	the	data	is	received.	Sink	
refers	to	the	place	where	data	is	sent	back	to	user.	Once	
complete	flow	from	the	source	to	sink	is	understood,	
we	can	easily	identify	what	kinds	of	issues	there	are,	for	
example,	XSS,	SQL	injection,	buffer	overflow,	and	many	
more	data	validation-related	issues.

For	more	information	on	data	validation	issues,	refer	to	
https://www.owasp.org.

Common mistakes
Other	common	issues	that	occur	when	Android	
applications	are	being	developed	and	that	are	similar	to	
the	web	application	penetration	testing	are	mentioned	
below:

 ■ Logout	of	a	user	in	an	Android	application	is	usually	
done	only	on	the	client	side	by	moving	him	to	new	
screen.	The	application	should	also	send	an	explicit	
logout	request	to	the	server	to	terminate	server-side	
sessions.

 ■ Session	ID	or	sensitive	data	should	not	be	sent	in	
request	URLs.

 ■ Inadequate	error-handling	leads	to	sensitive	
information	disclosure.



17 Secure Coding for Android Applications

WHITE PAPER

 ■ Data	entered	via	mobile	applications,	including	
Android	applications,	is	often	persisted	in	the	backend	
servers	without	validation.	The	persisted	data	is	then	
accessed	via	the	web	application,	resulting	in	security	
issues	like	XSS,	malicious	URL	injection,	and	others.

 ■ Android	applications	are	also	vulnerable	to	web-
related	attacks	like	XSS,	CSRF,	XFS,	and	others	when	
WebView	is used.

 ■ Session	ID	timeout	is	usually	very	long	or	sessions	do	
not	expire.	Invalidate	session	IDs	on	both	the	client	
and	server	side	after	30	minutes	of	inactivity.

References
 ■ Professional-Android-4-Application-Development	by	
Reto	Meier

 ■ http://developer.Android.com/ 
 ■ http://stackoverflow.com/questions/7295604/

how-to-set-an-alarm-in-android-java
 ■ http://proguard.sourceforge.net
 ■ http://www.cis.syr.edu/~wedu/Research/paper/

webview_acsac2011.pdf
 ■ http://developer.Android.com/training/articles/

security-tips.html
 ■ http://stackoverflow.com/questions/4062838/
intent-filter-within-a-service 

 ■ http://blog.opensecurityresearch.com/2012/04/
acquiring-volatile-memory-from-Android.html

 ■ http://bgr.com/2013/03/13/android-activation-
growth-analysis-373572/ 

About the Author
Naveen	Rudrappa	is	a	senior	security	consultant	at	
McAfee	Foundstone	Professional	Services.	Rudrappa	
has	more	than	seven	years	of	experience	in	information	
security.	He	has	also	completed	certificates	such	
CEH	and	SCJP.	Rudrappa	focuses	on	web	application	
penetration	testing,	thick	client	testing,	mobile	
application	testing,	web	services	testing,	code	review,	
threat	modeling,	external	network	penetration	testing,	
and	other	service	lines.

About McAfee Foundstone 
Professional Services

McAfee Foundstone Professional 
Services, a division of McAfee, offers 
expert services and education to 
help organizations continuously 
and measurably protect their 
most important assets from the 
most critical threats. Through a 
strategic approach to security, 
McAfee Foundstone identifies 
and implements the right balance 
of technology, people, and 
process to manage digital risk and 
leverage security investments 
more effectively. The company’s 
professional services team consists 
of recognized security experts 
and authors with broad security 
experience with multinational 
corporations, the public sector, 
and the US military. 
www.foundstone.com.

http://www.foundstone.com


About McAfee
McAfee	is	one	of	the	world’s	leading	independent	 
cybersecurity	companies.	Inspired	by	the	power	of	 
working	together,	McAfee	creates	business	and	 
consumer	solutions	that	make	the	world	a	safer	place.	
By	building	solutions	that	work	with	other	companies’	
products,	McAfee	helps	businesses	orchestrate	 
cyber	environments	that	are	truly	integrated,	where	
protection,	detection	and	correction	of	threats	happen	
simultaneously	and	collaboratively.	By	protecting	 
consumers	across	all	their	devices,	McAfee	secures	 
their	digital	lifestyle	at	home	and	away.	By	working	 
with	other	security	players,	McAfee	is	leading	the	effort	
to	unite	against	cybercriminals	for	the	benefit	of	all.

www.mcafee.com.

McAfee and the McAfee logo are trademarks or registered trademarks of McAfee, LLC or its subsidiaries in the US and other countries. 
Other marks and brands may be claimed as the property of others. Copyright © 2017  McAfee, LLC. 61697wp_secure-coding-android_0315
MARCH 2015

2821 Mission College Blvd.
Santa Clara, CA 95054
888.847.8766
www.mcafee.com

18 Secure Coding for Android Applications

http://www.mcafee.com

	Android Application Components
	Activity
	Intents
	Service
	Content Providers
	WebView
	Permissions

	Secure Coding Recommendations
	Lock-down application permissions
	Handle Broadcast Messages carefully 
	Broadcast Messages for Inter-Process Communication (IPC)
	Insecure storage
	Insecure storage in process memory
	Protect pending intents
	Improper usage of WebView 
	Secure usage of service
	Content providers
	Improper use of implicit intents

	References
	About the Author

